Tag Archives: fuel
Economic Feasibility of Sustainable Non-Food Biodiesel: Castor
Economic Feasibility of Sustainable Non-Food Biodiesel: Castor Economic Feasibility of Sustainable Non-Food Feedstock Based Biodiesel Production: Castor Bean Biodiesel Business Academy Global Knowledge Platform for a Sustainable Future CENTER FOR JATROPHA PROMOTION & BIODIESEL Building a sustainable biodiesel industry TELE: +91 141 2335839 FAX: + 91 141 2335968 CELL: +91 9413343550 E-Mail jatrophacurcas@gmail.com URL http://www.jatrophabiodiesel.org In a previous articles titled Economic Feasibility of Sustainable Non-Food Feedstock Based Biodiesel Production: Part 1 Part 2 and Part 3, we covered how Pongamia Pinnata, Moringa and Simarouba glauca are going to be sustainable low cost feed stock to build a profitable biodiesel industry. In this article we are going to discuss the potentiality of Castor Bean: cut carbon and fuel the future Biofuels are becoming big policy and big business as countries around the world look to decrease petroleum dependence, reduce greenhouse gas (GHG) emissions in the transportation sector, and support agricultural interests. After more than a decade of healthy growth for conventional biofuels like ethanol and biodiesel, the next wave of advanced biofuels is currently on the cusp of commercial scale-up. Biofuels have already helped the world achieve a tangible reduction in emissions as global CO2 emissions are forecast to rise by as much as 50 per cent over the next 25 years. Nevertheless, the world has come a long way, especially since the original Kyoto Protocol . Numerous countries have adopted mandated bio-content requirements for traffic fuels, for example. Considerable technological progress has also been made, in terms of new refining processes, new types of feedstock, and completely new energy sources. While some of these developments will be important for society two or three decades from now, the ones that call for the most attention are those that can help us start making a difference today. Making more of a difference today Biofuels offer the most direct route available today for reducing traffic-related emissions of CO2 and are already widely available. The future success of the biofuels industry will depend on a number of factors and learning experiences. No easy challenge, it must be admitted, but a necessary one all the same. The number one priority is that the raw materials required to produce biofuels are likely to remain more expensive than crude oil for the foreseeable future. Without this, industry will be unable – and ultimately unwilling – to make the type of investments needed, not only in capacity based on the best existing technology but also in new conversion technologies that can make use of a broad range of globally available feedstock..The degree to which the promotion of biofuels enters into competition with food production, raising questions of food security, depends on a variety of factors: Choice of feedstock; Natural resources involved (especially land and water); Relative efficiencies (yields, costs, GHG emissions) of different feedstocks; Processing technologies adopted. Concern over competition between biofuels and food production has been particularly acute given the overwhelming use of food and feed crops for both ethanol and biodiesel. Several measures are suggested for mitigating this problem. Among them, recommending a low cost input technology for cultivating hardy perennial crops that can grow well even with erratic and low rainfall, still giving assured returns is of great significance. In this context, cultivation of Castor Bean that can grow well under a wide range of hostile ecological conditions, offers a great hope. Castor bean, an annual oil crop, produces a seed that contains approximately 50 percent oil. The oil is of a high quality and there is a growing market for it among biodiesel manufacturers. The oil also has wide ranging applications in the industrial bio-chemical sector. As part of our quest to develop and market sustainable biofuels that have a minimal impact on food supplies and can help us make tangible reductions in greenhouse gas emissions, we’re investing in a number of promising research projects. Research and development programme at Center for Jatropha Promotion & Biodiesel (CJP) focuses on the 17 primary non-food sources of biodiesels —out of which seven namely Jatropha, Jojoba, Castor, Pongamia, Moringa, Castor Bean and Microalgae have been tried, tested that adequate amount of each type of feedstock that could be sustainably produced and utilized across the globe without compromising the fertility of agricultural soils, displacing land needed to grow our food, or threatening the health of our farms and forests. Future biodiesel production should be sourced from crop feedstock’s such as moringa, pongamia and castor that can be grown on marginal land. This will ensure establishment of a sustainable biodiesel industry that will not compete for land and other resources with the rest of the agricultural sector that produces food and fibre. In addition, sustainable biodiesel production will rely significantly on the capacity to run economically viable and profitable operations that will be resilient to fluctuations in fossil and non-fossil fuel prices, and government policies in relation to renewable energy and carbon emission reductions.Biofuel policies have been successful in developing an economic sector and a market. There are now more than 60 countries that have developed biofuel policies. Given the increasing price of fossil fuels and more efficient production, biofuels, or at least some of them, will be competitive even without public support. Increasingly it will be the market rather than policies that will drive the development of the sector. About the Plant Castor (Ricinus communis L.) is cultivated around the world because of the commercial importance of its oil. India is the world’s largest producer of castor seed and meets most of the global demand for castor oil. India produces around 1 million tonnes of castor seed annually, and accounting for more than 60% of the entire global production. Because of its unlimited industrial applications, castor oil enjoys tremendous demand world‐wide. The current consumption of Castor Oil and its derivatives in the domestic market is estimated at about 300,000 tonnes. India is also the biggest exporter of castor oil and its derivatives at 87% share of the international trade in this commodity. Castor is an important non‐edible oilseed crop and is grown especially in arid and semi arid region. It is originated in the tropical belt of both India and Africa. It is cultivated in different countries on commercial scale, of which India, China and Brazil is major castor growing countries accounting for 90 per cent of the worldʹs production. Historically, Brazil, China and India have been the key producing countries meeting global requirements. However, in early 90’s, Brazilian farmers moved away to more lucrative cash crops, and surge in domestic demand in China made them net importers, leaving India to meet the global demand. Cultivation Pattern Castor crop needs a tropical type of climate to develop. That’s why the castor is largely found in the countries lying in the tropical belt of the world. BENEFITS Castor Oil’s application range is very wide ‐ the uses range from cosmetics, paints, synthetic resins & varnishes, to the areas of national security involving engineering plastics, jet engine lubricants and polymers for electronics and telecommunications. Castor is a versatile, renewable resource having vast and varied applications such as lubricating grease, surfactants, surface coatings, telecom, engineering plastics, pharma, rubber chemicals, nylons, etc. Castor oil and its derivatives find major application in soaps, lubricants, grease, hydraulic brake fluids and polymers and perfumery products. The primary use of castor oil is as a basic ingredient in the production of nylon 11, jet engine lubricants, nylon 6‐10, heavy duty automotive greases, coatings and inks, surfactants, polyurethanes, soaps, polishes, flypapers, lubricants, and many other chemical derivatives and medicinal, pharmaceutical and cosmetic derivatives. The seeds and residual cake are highly poisonous and unless processed to remove the poisons cannot be fed to livestock. In some countries the cake is used as a fertilizer. Poisons contained in the cake include ricin. Castor is a plant that is commercially very important to the world. Castor seed oil cake is very useful manure to crops. Castor Cake is an excellent fertilizer because of high content of N (6.4%), Phosphoric Acid (2.55%) and Potash (1%) and moisture retention.which is suitable for cultivation of Paddy, Wheat, Maize and Sugarcane. Castor Oil Castor oil is obtained by pressing the seeds, followed by solvent extraction of the pressed cake. Castor Oil is one of the world’s most useful and economically important natural plant oils. India supplies 70% of the world’s requirements of castor oil. This oil is unique among vegetable oils and uniqueness is derives from the presence of a hydroxyl fatty acid known as ricinoleic acid (12‐ hydroxyl‐cis‐9‐octadecenoic acid) which constitute around 90% of the total fatty acids of the oil. Castor Oil is also distinguished from other vegetable oils by its high specific gravity, thickness and hydroxyl value.Castor oil is used either in its crude form, or in the refined hydrogenated form. Typically, 65% of it is processed. About 28% is refined, 12% is hydrogenated, 20% is dehydrated, and the balance 5% is processed to manufacture other derivatives. The major derivatives of Castor oil used in the industry– hydrogenated castor oil (HCO), Dehydrated castor oil (DCO), Sebacic acid etc. Carbon Credit The castor Plants act as sinks for carbon dioxide as Castor bean plants capture around 10 tons of carbon dioxide for every hectare (2.471 acres) planted and, hence, the Ricinus communis plantation will reduce the amount of this greenhouse gas (GHG) in the atmosphere. Given the widespread presence and ease of cultivation of the Castor Bean oil plant it could be cultivated in conjunction with subsistence agriculture programs as a potential oilseed feedstock for biodiesel. Food v Fuel & Castor Bean As per a recent report of World Bank, the rising crude oil prices are the biggest contributor to rising food prices. In the production and distribution of food, oil is used in everything from fertilizer production to powering farm equipment and transporting the food to consumers. In such context the World Bank report suggests that to stem rising food prices, the widespread famine inflicted on the world’s poorest countries, and the economic hardship exacted on the poor and working-class within the developed world, we must control oil prices. Further, the study carried out at CJP reveals that Castor Bean seed oil has good nutritional profile and other physico-chemical properties which got improved after the process of refining; therefore it can be used as a potential oil seed resource for edible purpose and bio-fuel production. Castor Bean as a source of biodiesel The Ricinus communis biodiesel meets all the three criteria any environmentally sustainable fuel must meet. These are social, technical and commercial. The seeds from the Ricinus communis Plant contain in excess of 45% oil. Castor seed oil is being used widely for various purposes. It is used as a lubricant in high-speed engines and aero planes, in the manufacture of soaps, transparent paper, printing-inks, varnishes, linoleum and plasticizers. It is also used for medicinal and lighting purposes. The cake is used as manure and plant stalks as fuel or as thatching material or for preparing paper-pulp. In the silk-producing areas, leaves are fed to the silkworms. Now the main use of the oil will be as bio fuel and for the production of biodiesel. This oil has an ash content of about 0.02% and the percentage of sulfur is less than 0.04%.The higher the cetane number (CN), the better the fuel will be when used as a diesel. The CN of the majority of biodiesel fuels is actually higher than petrol or diesel, and the cetane number of castor oil biodiesel is in a good range for diesel engines. The castor biodiesel has very interesting properties (very low cloud and pour points) that show that this fuel is very suitable for using in extreme winter temperatures. The project has many other positive economic, social and environmental impacts: There are income generation opportunities that result from the project like the provision of goods and services to the cultivation and its workers Yield Estimates: Castor Bean Yield is a function of light, water, nutrients and the age of the Plant. Good planning, quality planting material, standardized agronomy practices and good crop management may handsomely increase the yields. Ricinus communis will yield at Maturity as high as +1000 kl oil with proper nutrition, and irrigation. This is truly an exceptional amount of oil from an agricultural crop. ILUC discussion and Castor Bean The ILUC effect has become a controversial issue in international debates but also in some national debates. Many studies have shown there is enough land available to produce more food, more feed and more biofuels. According to FAO using the GAEZ classification of land types, there is a gross balance of 3.2 billion ha of prime and good land not used for growing crops, leaving a net balance of 1.4 billion ha, after subtracting built-up areas, forests and protected areas. Though the discussion of indirect land use change (ILUC) caused by biofuels is not scientifically supported, the Castor Bean does not cause land use change. It is an annual crop and grown in arid and semi arid regions. Biodiesel can make a large contribution to the world’s future energy requirements; this is a resource we cannot ignore. The challenge is to harness it on an environmentally and economically sustainable manner and without compromising food security. Economics: Cost & benefit ratio Castor farming is being developed by CJP in conjunction with Pongamia Pinnata and Indian mustard, and has shown to be a heartier and higher yielding variety as companion crop. Being a companion crop, castor bean can give the grower the ability to double crop and earn more — it’s like adding a second shift to the factory of agriculture. The double oil crop adds to the farmer’s income, creates jobs in the crushing operations, and the oil derived from the seed will help decrease foreign oil dependency. It’s a very attractive proposition for all stakeholders involved. Vast scope exists for exploitation of castor as a bioenergy crop although there are still some technological challenges to overcome. A combination of conventional breeding methods with biotechnological techniques provides newer routes for designing oils for biofuel purpose.Non-food castor will produce enough oil in the double-crop environment with Pongamia, simarouba or Indian mustard. The Castor Bean Biodiesel can be produced less than US$ 39 per barrel, detailed economics are here . Estimates of yields, prices and cost vary greatly, making it difficult for potential growers to make informed investment decisions about growing the crop. We identify the key elements in growing castor and examine their effects. We also provide accurate information about the crop for potential castor investors and growers after performing feasibility studies. BBA’S Next 6th 5 day Global Jatropha Hi-tech Integrated Nonfood Biodiesel Farming & Technology Training Programme in India from September 23-27, 2013 is all set to introduce you to the real world of nonfood biodiesel crops and business. Attendees shall also have the opportunity to explore castor crop science, agronomy and its cultivation technology etc. as these have also been included in the course. To find out more about JATROPHAWORLD 2013 please visit w ww.jatrophabiodiesel.org . As seats are limited in 6th Global Jatropha World 2013, register now. One can contact Coordinator Programme on M +91 9829423333 or mail to sign up for the event early and secure your place without delay. The next issue Part 5 shall be focused on “ Jojoba: Diesel from Desert Shrub” Director (Training) Biodiesel Business Academy T +91 141 2335839 F: +91 141 2335968 M- +91 982943333, www.jatrophabiodiesel.org Continue reading
CAAS, SIA To Study Alternative Fuel Use
Taylor Scott International News Taylor Scott International Taylor Scott International, Taylor Scott Continue reading
Powering Ahead With Biomass
Biomass is often overlooked within the renewable energy sector, but is now emerging as a key player for many countries seeking cleaner ways to power their economy, Gosia Klimowicz reports. One emerging technology that could boost the biomass sector is a new, 40MW straw-fired localized biomass model by DP CleanTech and the Polish Energy Partners. Image:biomassenergy.gr With urbanisation accelerating across the world, the global demand for energy is set to double by 2035. Given the dwindling supply of fossil fuels, those countries which are abundant in renewable energy sources are finding themselves in a privileged position – particularly those rich with wind, hydro, or solar energy. However, from being an often overlooked energy resource, biomass may just become the game changer for some countries. In countries such as Poland, for example, biomass co-firing has emerged as one of the largest sources of renewable power. As part of their green energy initiatives, several local utilities – including PGE, Tauron and Enea – have upgraded their coal-fired installations to allow for burning biomass as well as coal. Under its new three-pack energy law, Poland has just concluded works on a new law on renewable energy sources, which covers electricity, gas and renewables. Legislators debated whether to increase the share of renewable energy in the power generation mix, which will drive reforms to the green certificates system, whilst at the same time limiting subsidies for biomass co-firing generators, as well as other renewables such as wind or photovoltaics. Green certificates – tradeable documents proving that certain electricity is generated using renewable energy sources – are part of Poland’s scheme to support the renewable energy market. Green certificate trading enables the industry players to generate additional profit from the production of renewable energy. Changes to this system would help to avoid last year’s market crash where prices plunged almost 70 per cent, caused by the oversupply of green certificates. This reform could also help lift the share of the energy mix using renewable sources to 15 per cent in 2020 to meet the European Union (EU) targets. This target has been scaled back from the initial target of 20 per cent, which was an ambitious target for a country heavily dependent on coal. “The new law seeks to adjust Poland’s renewables support mechanism to the changing conditions of the renewable energy market,” Piotr Czopek, renewable energy specialist at the Polish Ministry of Economy told Eco-Business. Poland presented its draft bill on renewable energy support in mid-August. The main legislation is expected to come into force by the end of the year, or at the latest by June next year. According to the Ministry, the current green certificates framework – which provides the same level of support for all technologies using alternative energy sources – has been one of the causes of excessive development of technologies which offer very little innovation. Specifically, this equal treatment of different technologies has led to a rapid growth of biomass co-firing in coal power plants. Whilst, 50 per cent of current Polish electricity from renewable energies is produced from biomass, almost a third comes from co-firing biomass in coal-fired power plants. However, this method of generating power has come under criticism by environmentalists who say that most co-firing coal power plants do not use the emerging waste heat – about 75 per cent of the electricity from biomass is produced without using it. Waste heat is a by-product of energy conversion processes, mostly discarded in cooling towers, ponds, the atmosphere, or discharged into the sewer. Recovering value from waste heat can be another major opportunity to lower energy costs, increase the productivity, as well as reduce greenhouse gas emissions. Furthermore, Polish bioenergy experts have noted that Poland has been importing a huge amount of biomass in the past five years, when there is a vast amount of idle land, and waste agricultural streams which could be used for growing country’s own feedstock. They also state that the activities of large energy companies, which use biomass in order to receive compensation in the form of green certificates, have contributed to a considerable wastage of this resource. Nearly 30 per cent of the available biomass from agricultural waste weighing millions of tonnes is used for co firing, which is a highly inefficient use of the fuel. With more efficient technology and feedstock distribution, it is estimated that around 170,000 households could be heated with the same amount of biomass. Benefits and challenges of biomass co-firing Co-firing can be a cost-effective and relatively swift means of adding a renewable energy component, converting biomass to electricity by adding biomass as a partial substitute fuel in high-efficiency coal boilers. “ Provided the biomass is sourced sustainably, co-firing reduces emissions of carbon dioxide. Biomass also contains significantly less sulfur than most coal. This means that co-firing will reduce emissions of sulfurous gases such as sulfur dioxide that will then reduce acid rain.” Krzysztof Dragon, DP CleanTech “It incorporates environmental, socio-economic and strategy advantages”, says Krzysztof Dragon, vice president of clean energy solutions provider DP CleanTech. “For example, provided the biomass is sourced sustainably, co-firing reduces emissions of carbon dioxide, a greenhouse gas that can contribute to the global warming effect. Biomass also contains significantly less sulfur than most coal. This means that co-firing will reduce emissions of sulfurous gases such as sulfur dioxide that will then reduce acid rain.” Co-firing facilities are also less sensitive to seasonality in biomass fuel production as well as biomass availability and price. Power stations allows for greater flexibility in terms of the origin of the fuels, (for example from forestry, agriculture or municipal waste), as well as the ratio of each biomass fuel in the power mix. This is because it does not affect the fossil fuel load, which can still operate at 100 per cent. For many European countries, the promotion of co-firing is a key initial step for the development of sustainable biomass markets as well as for the creation of expertise on biomass handling and combustion. In Poland, biomass projects will continue to be supported through 2017, but the increasing number of projects has led to a large price hike for popular biomass feedstocks. Acting on such environmental and economic concerns, the government is cutting subsidies for biomass co-firing and the issuance of green certificates for co-incinerators. In response, the industry has come up with innovations that could boost the country’s biomass sector – without subsidies. One such solution is a new, localized biomass model conceptualized by DP CleanTech and the Polish Energy Partners. Currently under development, this optimized 30MW and 40MW straw-fired model will be more sustainable and energy-efficient. It will process most types of organic, carbon-containing feedstock without causing air pollution, greenhouse gases (GHG) and environmental harm. “It allows the co-firing of agricultural and forestry biomass, where agricultural waste can make up to 100 per cent of the power mix; and wood chips can constitute up to 80 per cent”, explained Piotr Maciołek, Industrial Energy Outsourcing Director, Polish Energy Partners. “This gives us a lot of flexibility in terms of location and availability of resources. In the future, we would like to build more power plants based on this model.” “ The new technology will significantly reduce the fuel consumption of biomass power plants, which leads to increased energy savings, improved cash flow and better return on investment. The project also features a special boiler design that will also minimize nitrogen oxide emissions, and an innovative feeding system that will handle both square and round bales. The new technology will significantly reduce the fuel consumption of biomass power plants, which leads to increased energy savings, improved cash flow and better return on investment. During the next two years, DP CleanTech will exclusively engineer, manufacture and commission the combustion boiler, fuel feeding and air system. The complete straw-fired power plant will be delivered to PEP in Winsko, in South West Poland. “The design is done, the location confirmed and we have all the approvals for construction. We are now waiting for the government’s decision regarding the new renewables bill. Without it, we won’t know all the economic parameters that we need in order proceed with works on the power plant,” said Mr Maciołek. Asia’s growing potential There is also significant potential for this biomass model in Asia, say private sector experts and academics. “ There is a lot of interest in biomass around the region but the main challenge is to make the business model work properly Dr Tong Yen Wah, National University of Singapore South East Asia has a huge need for distributed power generation and is also home to one third of the world’s usable biomass supply. However many countries still generate power through coal and expensive diesel fuel. Despite having vast waste streams such as rice husk, palm oil waste and wood chips, as well as strong government incentives for dedicated biomass plants around the 10MW range, they lack the infrastructure and resources to efficiently collect and transport biomass fuel. Perhaps by encouraging biomass co-firing as a cost effective first step for governments and utilities to meet renewables targets, the biomass industry will begin to better utilize waste streams and build a reliable fuel collection framework. With a more efficient fuel collection framework, the risk of disruption of fuel availability for small localized biomass power plants around the 10MW range is significantly reduced. Sales Manager at DP CleanTech, Jerome Le-Borgne said: “The incentives for dedicated 10MW plants in countries like Thailand and Philippines are very attractive and allow for fantastic profitability, because it is seen as a great solution for managing waste and providing distributed base load power to rural communities. However the number one challenge we are faced with is ‘bankability’ resulting from unpredictable fuel supplies”. According to Dr Tong Yen Wah, Assistant Professior at the Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS), while biomass co-firing is the dominating technology in countries such as Korea and Japan, it is less developed in other Asian countries such as Indonesia and Malaysia, which are rich in biomass feedstock. Dr Tong heads a few teams of researchers at NUS who are looking at different models to convert and transport biomass. “The models that we are currently exploring are also strongly focused on the logistics: either collecting the biomass or implementing a transportable technology to convert biomass into energy. We need to find a cost-efficient solution to the many logistical issues.” “There is a lot of interest in biomass around the region but the main challenge is to make the business model work properly,” he said. Clearly, the opportunities are there for biomass to become a much bigger contributor to the renewable energy sector in many countries, but its development will depend on several factors. Building certainty into fuel pricing and fuel supplies can be realised through a combination of government support, market reform, and innovation in logistics processes. However, the efficiency and flexibility of the technology to move along the development curve from co firing to stand alone biomass power plants is an equally critical factor in the development of the industry as a whole. Continue reading