Tag Archives: congress

Obama seeking congress nod for Syria action

Obama seeking congress nod for Syria action (Agencies) / 1 September 2013 Delaying what had loomed as an imminent strike, President Barack Obama abruptly announced on Saturday that he will seek congressional approval before launching any military action meant to punish Syria for its alleged use of chemical weapons in an attack that killed hundreds. With Navy ships on standby in the Mediterranean Sea ready to launch their cruise missiles, Obama said he had decided the United States should take military action and that he believes he has “the authority to carry out this military action without specific congressional authorisation.” At the same time, he said, “I know that the country will be stronger if we take this course and our actions will be even more effective.” Congress is scheduled to return from a summer vacation on September 9. The president didn’t say so, but his strategy carries enormous risks to his and the nation’s credibility, which the administration has argued forcefully is on the line in Syria. Obama long ago said the use of chemical weapons was a “red line” that Syrian President Bashar Assad would not be allowed to cross with impunity. British Prime Minister David Cameron, who suffered a humiliating defeat when the House of Commons refused to support his call for military action against Syria, said on Saturday that he understood President Barack Obama’s decision to ask the US Congress to authorise military action against Syria. “I understand and support Barack Obama’s position on Syria,” the British prime minister said in a tweet. The developments marked a stunning turn in an episode in which Obama has struggled to gain international support for a strike, while dozens of lawmakers at home urged him to seek their backing. Halfway around the world, Syrians awoke on Saturday to state television broadcasts of tanks, planes and other weapons of war, and troops training, all to a soundtrack of martial music. Assad’s government blames rebels in the August 21 attack, and has threatened retaliation if it is attacked. Russian President Vladimir Putin, saying he was appealing to a Nobel Peace laureate rather than to a president, urged Obama to reconsider. A group that monitors casualties in the long Syrian civil war challenged the United States to substantiate its claim that 1,429 died in a chemical weapons attack, including more than 400 children. The new timetable gives time for UN inspectors to receive preliminary lab results from the samples they took during four days in Damascus. Fully assessing the evidence collected by weapons inspectors could take up to three weeks, the organisation in charge of the investigation said on Saturday. United Nations inspectors arrive at the headquarters of the Organisation for the Prohibition of Chemical Weapons (OPCW), in The Hague, on August 31. -AFP The team, which included nine experts from the Organisation for the Prohibition of Chemical Weapons (OPCW) and three from the World Health Organisation, arrived at the OPCW’s Hague headquarters on Saturday evening after leaving Syria early in the morning. “The evidence collected by the team will now undergo laboratory analysis and technical evaluation according to the established and recognised procedures and standards,” the OPCW said in a statement. The group’s leader was expected to brief Secretary-General Ban Ki-moon on Sunday. Republicans expressed satisfaction at Obama’s decision, and challenged him to make his case to the public and lawmakers alike that American power should be used to punish Assad. “We are glad the president is seeking authorisation for any military action in Syria in response to serious, substantive questions being raised,” House Speaker John Boehner of Ohio and other House Republican leaders said in a joint statement. “In consultation with the president, we expect the House to consider a measure the week of September 9th. This provides the president time to make his case to Congress and the American people.” It appeared that effort at persuasion was already well underway. The administration arranged a series of weekend briefings for lawmakers, both classified and unclassified, and Obama challenged lawmakers to consider “what message will we send to a dictator” if he is allowed to kill hundreds of children with chemical weapons without suffering any retaliation. While lawmakers are scheduled to return to work September 9, officials said it was possible the Senate might come back to session before then. Obama said on Friday that he was considering “limited and narrow” steps to punish Assad, adding that US national security interests were at stake. He pledged no US combat troops on the ground in Syria, where a civil war has claimed more than 100,000 civilian lives. With Obama struggling to gain international backing for a strike, Putin urged him to reconsider his plans. “We have to remember what has happened in the last decades, how many times the United States has been the initiator of armed conflict in different regions of the world, said Putin, a strong Assad ally. “Did this resolve even one problem?” Even the administration’s casualty estimate was grist for controversy. The Syrian Observatory for Human Rights, an organization that monitors casualties in the country, said it has confirmed 502 deaths, nearly 1,000 fewer than the American intelligence assessment claimed. Rami Abdel Rahman, the head of the organisation, said he was not contacted by US officials about his efforts to collect information about the death toll. “America works only with one part of the opposition that is deep in propaganda,” he said, and urged the Obama administration to release the information its estimate is based on. In the hours before Obama’s Rose garden announcement, he was joined at the White House by top advisers. Vice-President Joseph Biden, who had planned a holiday weekend at home in Delaware, was among them. So, too, were Defence Secretary Chuck Hagel, Secretary of State John Kerry and other top administration officials. Continue reading

Posted on by tsiadmin | Posted in Education, Entertainment, Investment, investments, Music, News, Sports, Taylor Scott International, TSI | Tagged , , , , , , , | Comments Off on Obama seeking congress nod for Syria action

Turning Grass Into Gas

The story of cellulosic biofuels is one of big dreams and meager results. That may be about to change BY BRUCE BARCOTT This article originally appeared on OnEarth.org. The promise of cellulosic biofuels sounds like a fable out of the Brothers Grimm: turning straw into liquid gold. Or rather, switchgrass into gasoline. It’s not magic. The process has been around since the early 1800s, when the chemist Henri Braconnot figured out how to strip sugars from cellulose—the basic building block of all plant life—and refine them into a crude form of ethanol. For almost 200 years cellulosic ethanol has had the potential to be one of the world’s greenest fuels. Unlike corn ethanol, cellulosic doesn’t rely on food crops. It can be made from corn stover (leaves and stalks), switchgrass, miscanthus, bagasse (sugar cane refuse), wood, even municipal waste. But each of these feedstocks presents its own technical and environmental challenges. The trick is to make the ethanol sustainably, in bulk, and at a price that competes with crude oil. Cellulosic refineries enjoyed a brief heyday in the early 1900s—Henry Ford’s first models could run on pure ethanol—but were driven out of business by cheap petroleum. Years ago, I spoke with a cellulosic researcher during a visit  to the National Renewable Energy Laboratory in Golden, Colorado. “The science works,” he told me. “The problem is economics.” Nobody could figure out how to produce it cheaply enough to turn a profit. So for nearly a century, cellulosic sat on the shelf. The landscape changed in the mid-2000s. Faced with two wars and a spike in fuel prices, Congress and the Bush administration called for a radical increase in American biofuel production. The Renewable Fuel Standard (RFS), adopted in 2005, mandated a near doubling of the amount of biofuel blended into the nation’s fuel supply by 2012. It didn’t promise to break our addiction to foreign oil, but it was a first step. That mandate led to an explosion of corn ethanol production. In early 2005, 81 ethanol refineries were producing 3.6 billion gallons per year. By 2007 an RFS-driven boom had contractors building 76 new plants capable of putting out an additional 5.6 billion gallons. So much corn was diverted into ethanol that a food-versus-fuel scare began rocking commodities markets. From 2005 to the middle of 2008 the world price for corn and soybeans more than doubled, causing food shortages and riots in many parts of Asia, Africa, and Latin America. Speculators fleeing the failing mortgage-backed securities market started putting huge bets on crop futures, further driving up commodities prices. Enter cellulosic biofuels. Long championed by environmentalists, they suddenly found support even among America’s most strident oilmen. Republican James Inhofe of Oklahoma, the Senate’s leading climate change denier, hailed cellulosic as “a promising technology that could significantly increase fuel supplies” without hurting food prices. With that kind of bipartisan support, Congress revised the renewable fuel standard in 2007 to include cellulosic biofuels. The target numbers—100 million gallons of cellulosic by 2010, 500 million by 2012—were ambitious, especially considering that not a single commercial-scale cellulosic refinery had ever been built in the United States. Not to worry, said cellulosic industry officials. They assured the Environmental Protection Agency, which administers the RFS, that refineries under construction would start producing millions of gallons within a couple of years. Five years later, cellulosic refineries had produced just 20,069 gallons of fuel. Faced with high construction costs and interminable technical delays, many start-ups failed before producing a single drop. There were also some notorious frauds, such as Cello Energy. The EPA anticipated that Cello would produce 70 million gallons a year by 2010. Agency officials seemed to believe in the company. (And why not? CEO Jack Boykin was the former head of the Alabama Ethics Commission.) But after a judge found him guilty in 2009 of “oppression, fraud, wantonness, or malice” in his business dealings, Cello folded and took 70 percent of the nation’s hoped-for 2010 cellulosic fuel production with it. It looked like a classic case of overpromise and underdeliver. “Congress set those RFS targets without actually discussing with the technical community what would be possible,” says Robert Brown, director of Iowa State University’s Bioeconomy Institute. “The growth curves set for cellulosic fuels were impossible.” No other clean-energy technology faced such a steep scale-up curve. Wind and solar power, geothermal, and corn ethanol required decades to reach the production levels we see today. Cellulosic companies were asked to do it in four years. When they failed to hit their mark, vultures circled the industry. In late 2011 a Wall Street Journal editorial branded it “The Cellulosic Ethanol Debacle.” Two early cellulosic companies, Calysta and Coskata, switched to making gasoline from natural gas. BP and Shell abandoned their cellulosic projects. Congress began reconsidering the value of the RFS, using the unmet cellulosic targets as Exhibit A. Stock prices of cellulosic companies tanked. Investment capital fled. But then a funny thing happened: in early 2013, cellulosic ethanol refineries finally began producing biofuel. Texas-based KiOR, the nation’s leading independent cellulosic company, began shipping cellulosic diesel and gasoline from its refinery in Columbus, Mississippi. INEOS Bio’s Florida refinery began producing cellulosic ethanol from yard and wood waste in early summer. By 2014 the Spanish energy giant Abengoa, the chemical conglomerate DuPont, the ethanol maker Poet, and five other cellulosic refiners are expected to begin producing next-generation biofuel. That production comes none too soon. Cellulosic refineries are expensive to build. A commercial-scale plant (producing about 20 million gallons a year) can cost $100 million to $200 million. Months of testing and tweaking are required before full production starts. The burn rate at cellulosic start-ups can be astronomical. Prior to its first fuel shipments this year, KiOR went through roughly $10 million a month on R&D; revenues were about $1,000 a day. After six years of struggle, the cellulosic biofuel industry is finally taking its first steps toward self-sufficiency. “The good news,” Advanced Ethanol Council executive director Brooke Coleman told me, “is that in 2013 we’re expecting our production number for the first time to not be zero.” If Coleman’s quote seems a little cockeyed, then you haven’t spent much time in the cellulosic biofuel space. When it comes to hope, mystery, controversy, and drama, no green energy sector can match it. Over the past six years, the industry has seen IPO jackpots and shocking failures, breakthrough discoveries and maddening delays. Some early believers have lost the faith in cellulosic. Others have found hope in the ability of cellulosic refineries to produce not just ethanol but also gasoline, diesel, jet fuel, and bio-based industrial chemicals, opening up new markets that might include the U.S. military, the global airline industry, and chemical manufacturers. “Is cellulosic still worth it?” asks Mackinnon Lawrence, a renewable energy analyst and consultant for Navigant Research, in Colorado. “How much money do you throw at cellulosic to commercialize it? What’s its purpose now?” These are fair questions. In a world of limited resources, it doesn’t make sense to pour money into failed technologies. It’s tough to know how the cellulosic story will end, or whether the grand ambitions of 2007 will ever be realized. Yet it’s clear that predictions of cellulosic’s demise have proved to be premature. * * * To get a sense of where things stand, I waded into the Advanced Biofuels Leadership Conference earlier this year in Washington, D.C. The biannual meeting of scientists, entrepreneurs, CEOs, chemists, fuel buyers, and feedstock sellers offers a candid look at the state of the industry. In 2013, the most accurate description of that state would be roiling. How much do we really need biofuels? Biofuels are probably the most complicated form of energy that NRDC works on. Done right, with proper environmental safeguards, they can be an important way of reducing oil dependency and combating climate change. Done wrong, they can add to our climate problems, increase food prices, destroy wildlife habitat, and cause freshwater shortages and pollution. It’s especially challenging to find alternative fuels that will help us reduce harmful emissions from aviation, off-road vehicles, and heavy-duty transportation. To stop global warming, we have to try all possible solutions, and one of those is biofuels. People were excited when the federal government added cellulosic biofuels to the Renewable Fuels Standard in 2007. Is the RFS the best way to support sustainable biofuels? No. The California Low Carbon Fuel Standard is the best policy model we have. It gives the greatest rewards to the cleanest fuels, including the electricity used for electric vehicles. It also helps cut demand for dirty fuels like tar sands oil from Canada. Currently, the RFS mostly supports corn ethanol, which increases global warming and exacerbates all the problems with growing corn at the unsustainable scale we do these days. That said, the federal standard has provided important support for advanced biofuels investors and developers, and it has by far the strongest safeguards of any federal biofuels policy. I worry that if this Congress starts monkeying with the RFS, it will make it worse and/or not replace it with something better. Instead, we think the Environmental Protection Agency can improve the implementation of the standard by waiving some of the corn ethanol requirements to make space for better biofuels and limiting the scale of production for each biofuel it approves so that it can address unanticipated impacts. What else can we do to advance sustainable biofuels? The departments of defense, agriculture, and energy are working together to purchase advanced biofuels for the military. This is probably the best hope we have at the federal level right now. NRDC is working directly with both the military and the aviation industry, and many airlines have committed to buy only biofuels that are certified as sustainable. If the military and airlines can come up with purchasing programs, we believe that a lot of cities, states, and other companies will think hard about emulating them. By the second day of the conference, the ballroom of the Gaylord Hotel and Convention Center had taken on the atmosphere of speed dating. Dozens of engineers and entrepreneurs were looking to hook up. Lufthansa jet fuel buyers sized up cellulosic biofuel refiners. A Georgia-Pacific salesman sought customers for his company’s vast holdings of southern pine. Venture capitalists heard wooing pitches from biofuel makers who were long on patents and short on cash. At the microphone, conference host Jim Lane played matchmaker. “If you aren’t meeting the people you need to meet,” said the Biofuels Digest editor and publisher, “check with me and I’ll make the connection.” The corporate mating dance was occasioned by a fact of life in the advanced biofuel world: money is still tight. Having sunk a big chunk of their capital into refinery construction, a number of companies are now trying to meet payroll by hook or by crook until they can start producing fuel and bringing in revenue. Finding new investors has become a survival skill. Between sessions, Lane hustled to the mike to announce the latest matches. “Brazil’s GranBio just took a 25 percent equity stake in American Process!” he cried, raising a smattering of applause. The conference swung between celebratory toasts and sobering reassessments. “When I started 20 years ago, this was just an idea,” Valerie Sarisky-Reed, acting director of the U.S. Department of Energy’s Bioenergy Technologies Office, told the conference. “Now we’re seeing it actually happen.” Later that day, Bob Walsh, chief commercial officer for the small cellulosic start-up ZeaChem, cheerfully described his company’s money troubles as “a speed bump,” but it was hard not to see him as a dead man walking. In March, ZeaChem’s wood-to-ethanol refinery in Boardman, Oregon, produced its first batch of fuel. CEO Jim Imbler hailed this milestone and looked forward to more success “as we ramp up to full capacity.” But ZeaChem’s production came too late. Just as its spigot opened, the company ran out of cash. Imbler and his team scrambled to find a bridge loan to keep it alive. When no loan came through, ZeaChem scaled back operations and laid off workers. The Boardman refinery has been mothballed since March. What’s going on? The short answer is this: turning wood or grass into fuel on a commercial scale is really hard to do. “Getting to scale” is industry-speak for the process of moving from a small research lab putting out fuel in 100-gallon batches to an industrial-size refinery producing 10 million to 40 million gallons. When chemical or pharmaceutical manufacturers scale up, they commonly do so by orders of 10 or 100, expressed as 10x or 100x. With the RFS, Congress asked the cellulosic industry to scale up on the order of 10,000x in five years. “In a lab, you’re working with perfectly clean wood chips,” explains Renata Bura of the University of Washington’s biofuels and bioproducts laboratory. “It’s almost never that pristine in a real-world refinery. At a commercial-scale facility, you’ll have needles, bark, and branches” polluting the mix. At the biofuels conference, I asked Peter Williams, CEO of INEOS Bio, why it was taking so long to produce fuel at his company’s refinery in Vero Beach, Florida. “It took us four years to build it,” Williams told me. “Now we’re figuring out how to drive the machine.” A number of problems typically come up in cellulosic facilities. Mixing enzymes evenly through the feedstock can be easy in a one-gallon container. It’s a different thing entirely in an industrial-size tank. Acids used in the process can corrode pipes. No matter how diverse the solids that go into the system—and with municipal waste, it’s a grab bag, containing everything from rotten food to plastic bags—the fuel produced has to be uniform in quality. For INEOS, attention to detail paid off: in late July the company announced that it was about to start shipping fuel. “Getting those feedstock handling issues dead right—you can’t underestimate how much time that takes,” said Williams. The companies that survive long enough to produce fuel may be the ones wealthy enough to give their chemists and engineers the time they need to work the bugs out of a technically demanding process. Of the four companies at or near commercial-scale production, three are sustained by deep-pocketed parents with revenue streams in other industries. What that money buys is time. Abengoa’s cellulosic plant in Hugoton, Kansas, a small town just north of the Oklahoma panhandle, is the company’s first commercial-scale biorefinery. “Frankly, we’ve been working on this process for 10 years,” said Chris Standlee, executive vice president of Abengoa Bioenergy, the company’s renewable fuel subsidiary. Abengoa started with “lab and pilot scale” facilities in Spain in 2003, he said, and the company has been working steadily on scaling up to larger plants ever since. * * * The curious thing about cellulosic biofuel is that even when production was zero, demand for the stuff continued to climb. It wasn’t all driven by the RFS mandate. Over the past few years, a number of companies and industries have set carbon reduction goals. It’s easy to become cynical about these announcements. But when they’re taken seriously they move markets—and provide critical demand for emerging green-fuel industries. The American military is a huge future buyer. The U.S. Navy has announced that it wants to source half its non-nuclear fuel from renewables by 2020. That’s an ambitious goal, and the Navy is aggressively encouraging American biorefiners to build the plants necessary to produce upward of three billion gallons per year. Because the military is leery of the food-versus-fuel controversy, Navy fuel buyers are especially interested in advanced biofuels. Pleasanton, California–based Fulcrum BioEnergy, which converts municipal solid waste into biofuel, has already signed development deals with both the Air Force and the Navy. Like most refiners, though, Fulcrum has yet to produce fuel: its Reno, Nevada, waste-to-fuel facility is still under construction. Commercial airlines want cellulosic too. When officials from United, British Air, Lufthansa, and Qantas appeared before the advanced biofuels conference in Washington, the ballroom positively buzzed. The airline industry has a goal of becoming carbon neutral by 2020, and major carriers want cellulosic to be a big part of the fuel mix. That market is massive. Worldwide, commercial airlines spend more than $200 billion a year on jet fuel, $50 billion in the United States alone. Airlines see carbon reduction as a key to their growth, because conventional fuels are expected to rise in cost as they become subject to carbon taxes and regulatory systems outside the United States. “We expect to buy 100 million tons of biofuel by the year 2050,” Jonathan Counsell, head of environment for British Airways, told the conference. No company is seeking biofuels more urgently than Qantas. Australia’s carbon tax has the airline paying more than $20 per emitted ton of carbon, so bringing more biofuel into their fuel mix isn’t merely a future concern. It’s a bottom line issue right now. And Australian companies are especially keen to find nonfood biofuels in light of the decade-long drought the continent suffered in the 2000s. Another emerging market might prove nearly as valuable as marine diesel and aviation gas: renewable chemicals. The same process that turns switchgrass into ethanol can be tweaked to produce industrial chemicals such as BDO (1,4-butanediol) and butadiene, used in running shoes, cosmetics, tires, and other products. Earlier this year the German company BASF, the world’s largest chemical maker, signed a deal with San Diego–based Genomatica to produce renewable BDO using cellulosic technology. For BASF cellulosic chemicals could provide value at both ends of the factory: relief from the fluctuations of global petroleum prices and extra benefit to buyers. In competitive markets such as cosmetics and running shoes, bio-based ingredients could be the next wave of “organic” products. * * * Attending an advanced biofuels conference can feel like wandering into a religious conclave. Everyone there shares a belief in the moral righteousness of biofuels. Most of them believe there’s a financial payoff down the road too. But under that umbrella of agreement there are debates about the correct path to enlightenment—or rather, financial sustainability. The cellulosic companies that continue to survive seem to have a couple of things in common. In addition to giving their engineers plenty of time, they’ve capitalized on small advantages in areas like refinery siting, feedstock storage, and customer development. Some are working a piggyback strategy. Kansas-based ICM has developed bolt-on cellulosic refineries that work with existing ethanol plants to create a kind of whole-corn production line. The kernels go in the ethanol side; the rest of the plant goes to the cellulosic side. KiOR, which produces gasoline and diesel from southern yellow pine, is trying a different approach. Wood, corn, grass, and wheat are so heavy and costly to transport that a cellulosic operation must source its feedstock within a 30- to 50-mile radius of the refinery. KiOR sees former pulp and paper mill towns as great refinery hosts. “The wood is there, the harvest infrastructure is there, and so are people familiar with handling the feedstock,” chief executive Fred Cannon said. But the use of wood raises an uneasy question: If cellulosic really took off, would natural forests be chipped into ethanol? That’s a real concern for environmental groups like the Dogwood Alliance, which works on forest issues in the Southeast and is partnering with NRDC on its Forests Aren’t Fuels campaign (see “Forest Alert,” p. 61). “The cellulosic ethanol market could provide an incentive for landowners to clear-cut their forests,” said the alliance’s Thomas Llewellyn. Finding a buyer for single-species tree plantations could exacerbate the conversion of natural forests into row crops. “A thousand acres of plantation pine isn’t the same as a biodiverse forest,” Llewellyn said. Abengoa Bioenergy’s small-scale cellulosic refinery in Kansas has been operating for the past four years. “There’s a lot of corn, wheat, milo, and prairie grasses grown in this region,” said Chris Standlee. “With multiple feedstocks, we’ve got different harvests at different times of the year,” which gives Abengoa a kind of manufacturing-on-demand model that cuts down on storage costs. Abengoa’s next-generation refinery, a 25-million-gallon facility, is expected to produce fuel by early 2014. For Abengoa, the luxuries of time and patience have been critical. Many competitors tried the 10,000x scale-up and failed. Abengoa’s scale-up is only 16x. Because the fate of the company wasn’t riding on their shoulders, the engineers in Hugoton could spend years tinkering with the technology at the 1.5-million-gallon plant. “We’ve been operating for thousands of hours for the past four years,” Standlee said. That experience has proved invaluable in designing a larger plant that they believe will actually work. In Southern California, meanwhile, the cellulosic start-up Cool Planet has attracted a stable of high-profile funding partners (including Google Ventures, GE, and ConocoPhillips) by turning the scale-up problem on its head. “We’re going small,” Cool Planet CEO Howard Janzen told the biofuels conference. “Instead of one large $350 million facility, we’re building a large number of small $20- to $50-million facilities.” Cool Planet’s refining process converts wood, miscanthus grass, and other feedstocks into biofuels and a charcoal-like substance called biochar, which captures carbon and can be returned to the soil. According to Janzen, by removing carbon (through the growth of biomass) and sequestering it as biochar, the company’s process isn’t just carbon neutral—it’s carbon negative. “Here’s a picture of our prototype refinery in Southern California,” he said. On the screen appeared a photo of a refinery the size of four shipping containers. I know that’s the size of it because the entire refinery was built inside four actual shipping containers. A few weeks after the conference, I had a chance to drop by the Cool Planet refinery, which sits in the middle of a strawberry field in Camarillo, about 50 miles northwest of Los Angeles. “Our first commercial plant doesn’t have to be perfect,” Janzen told me. “It won’t cost that much. We’ll build it and then keep improving as we build more. When you have a new technology and you try to scale it up too quickly, people have problems executing.” Mike Bukowski, Cool Planet’s operations chief, took me to the control room, where four systems operators monitored a dozen computer screens. “We’re doing test runs this week to confirm capacities,” he said. “We have the fractionator—which breaks the miscanthus grass feedstock into its component parts—in the first container, then we convert it into gasoline and biochar in the second container.” “Where does the fuel come out?” I asked. Bukowski led me to the back of the refinery. “That’s it,” he said, pointing to a metal container the size of a household propane tank. If the commercial-scale refineries coming online from KiOR and Abengoa represent the next generation of biofuel, Howard Janzen believes Cool Planet’s radically small concept could be the next-next. But to survive, Cool Planet will need to find special advantages and give its engineers time to work the bugs out. If it can do that, it has a shot—although it’s still a long shot. As he showed me around the four-container refinery, Bukowski struck me as one of the cellulosic industry’s lesser-known but most valuable commodities: the old-school refinery engineer with environmental motivations and a thirst for innovation. A few years ago Bukowski was running a 9.5-million-gallon-a-day petroleum refinery for Sunoco near Philadelphia. “Cool Planet’s technology was maybe 50 percent of what attracted me” enough to move across the country, he told me. “We’re making gasoline that’s identical to the fuel going into automobiles right now. You’re going to have a lot more success if you offer a renewable fuel to consumers in a way that doesn’t ask them to switch to something they’re unfamiliar with. If you can do that, you can really make a difference environmentally.” Bukowski and other cellulosic producers will need to start making that difference quickly. They’ve gone from labs to commercial-scale refineries in six years. That’s fast for a complicated process like fuel refining, but an eternity in political time. The U.S. shale oil boom, driven by the hugely controversial practice of fracking, has dramatically increased local fossil fuel production. American wells are producing 28 percent more crude oil and 21 percent more natural gas than they did in 2007. That, along with the recession, changed the political landscape. Senator James Inhofe isn’t praising the promise of cellulosic anymore; now he’s leading the congressional charge to repeal the entire RFS. But if cellulosic refineries can keep increasing the flow of biofuel into the nation’s fuel supply, they may be able to stave off the attacks long enough to stand on their own two feet. On my way out the door of Cool Planet’s Camarillo refinery, Mike Bukowski acknowledged the hard truth his industry is facing. Green fuel is wonderful, he said, “but it doesn’t do anybody any good if the company producing it can’t stay in business.” It’s a simple formula: make fuel, make money, change the world. MORE BRUCE BARCOTT. Continue reading

Posted on by tsiadmin | Posted in Investment, investments, News, Property, Taylor Scott International, TSI, Uk | Tagged , , , , , , , , | Comments Off on Turning Grass Into Gas

Farm Subsidies: A Welfare Program For Agribusiness

t’s one of the most widely reviled federal programs. So why is Congress fighting to save farm subsidies? By The Week Staff | August 10, 2013 Most farmers are wealthier than the average American, with a household income of $87,289 in 2011 — 29 percent higher than the $67,677 average for all U.S. households Why is the farm bill so controversial? Critics contend that the subsidies it hands out are wasteful, illogical, and counterproductive — a welfare program for millionaires and giant agribusinesses. Over the last decade, the farm bill has cost taxpayers more than $168 billion. In theory, the program uses loans, price supports, and payments to protect family farmers from the fickle fluctuations of weather, price, and economic conditions, so that their businesses remain stable and Americans are ensured a steady supply of affordable food. In practice, the program keeps food prices high, costing consumers billions, while funneling most of its aid to giant agribusinesses and wealthy farmers. About 75 percent of total subsidies go to the biggest 10 percent of farming companies, including Riceland Foods Inc., Pilgrims Pride Corp., and Archer Daniels Midland. Among the “farmers” who get federal subsidies are Bruce Springsteen (who leases land to an organic farmer), Jon Bon Jovi (who owns bee colonies), former President Jimmy Carter, and billionaire media mogul Ted Turner. “The typical farmer has literally millions of dollars of wealth,” said Dan Sumner, an agricultural economist at the University of California, Davis. What about the average farmer? He’s doing pretty well too. Despite droughts and high temperatures, farmers have enjoyed record crop-production levels and prices, as well as double-digit increases to the value of their land for the third year in a row in 2013. In fact, most farmers are wealthier than the average American, with a household income of $87,289 in 2011 — 29 percent higher than the $67,677 average for all U.S. households. And yet many still get taxpayer dollars to protect their incomes. In fact, the farm bill pays some farmers not to grow crops — in order to avoid oversupply that would drive food prices down for the rest of us. “Only an evil genius could have dreamed this up,” said Scott Faber, vice president for governmental affairs at the Environmental Working Group. How did the program start? Subsidies originated during the Great Depression and the Dust Bowl catastrophe of the 1930s, when there was a genuine fear that the nation’s agricultural sector was on the brink of collapse. At that time, about a quarter of the country’s population lived in rural areas, and tens of thousands of American families found themselves literally in danger of “losing the farm.” So President Roosevelt pushed through the Agricultural Adjustment Act, which pegged crop prices to their historic highs and introduced the policy of paying farmers not to produce. It was supposed to be a “temporary solution to deal with an emergency,” as Secretary of Agriculture Henry Wallace put it. But in 1949 the Agricultural Act was made permanent, and — more than six decades later — a version of that same legislation still exists today. Why not reform the program? Congress tried that in 1996, with the Freedom to Farm Act, which removed price supports and grain management in an attempt to let the free market dictate prices. That reform didn’t last long. As commodity prices fell and farmers began to complain, lawmakers caved in and introduced several new programs that continue today. They include the much-criticized “direct payments” to farmers — checks written regardless of market conditions or the farmer’s crop yields — and the controversial crop insurance program, which critics say has encouraged widespread fraud. In that program, taxpayers pick up 62 percent of any farmer’s insurance premiums and help fund payouts if a claim for crop damage is made. Why not kill subsidies altogether? Politics. The farm lobby has immense power in Washington, thanks to its generous contributions to congressional campaigns and political parties, and to the large number of legislators from farm states — most of them Republican. Democrats have also traditionally supported the farm bill because it contains food stamp funding. This year, that partnership broke down, when House Republicans passed a version of the farm bill that strips the legislation of its food stamp provisions for the first time since 1973. President Obama responded by threatening to veto any legislation that doesn’t include food stamp funding. At the moment, the situation is at a stalemate. What’s likely to happen? A deal will probably get cut that will keep farm subsidies fairly intact. The House version of the bill, in fact, contains some of the most generous farm spending in history: While ending direct payments, the legislation channels $8.9 billion into an expanded crop insurance program, which already ballooned from $1.5 billion in 2002 to $7.4 billion by 2011. In the House bill, moreover, the farm subsidies that used to expire every five years are made permanent. “It’s hard to understand how anyone in the House who calls himself a conservative could support this, but many did,” said Chris Chocola, president of the free-market-oriented Club for Growth. “They’re locking in historically high commodity prices at taxpayer expense.” New York City’s ‘farmers’ New Yorkers wouldn’t know it, but they live in a city of farmers. Over the last decade, the farm bill has paid out millions of dollars in subsidies to more than 1,500 city residents — 374 on the plush Upper East Side alone. They aren’t receiving payments for farms in the city, but for property they own elsewhere. Recipients include Mark F. Rockefeller, a fourth-generation heir of the famous family who was paid $342,634 to not farm from 2001 to 2011, so that his land in Idaho could return to its natural state. Other top New York farmers include a managing director at Wells Fargo bank, and a neurologist in Queens. “Payments are going to people in Manhattan who simply have invested in farmland and are about as far away from farmers as one could imagine,” said Craig Cox, senior vice president for agriculture and natural resources at the Environmental Working Group. “That should really make people wonder what on earth has happened to the farm program.” Continue reading

Posted on by tsiadmin | Posted in Investment, investments, News, Property, Taylor Scott International, TSI, Uk | Tagged , , , , , , , , , , | Comments Off on Farm Subsidies: A Welfare Program For Agribusiness