Tag Archives: atmosphere
Biofuels Debate Draws Crowds To European Parliament
Wednesday 4 September saw Members of the European Parliament (MEP) hosting ‘The big debate: Biofuels’, with a panel of experts from industry, academia and NGOs. The debate was particularly relevant given next week’s European Parliament vote on updating the fuel quality and renewable energy directives, and brought much discussion, particularly on the damaging impacts of biofuels based on food-crops. Bellona Europa, 06/09-2013 The debate was introduced by German socialist MEP Ismail Ertug. Co-host Corinne Lepage, a French liberal MEP, has for the last months been responsible for steering a report on fuel quality and renewable energy through the European Parliament. This update to the Renewable Energy Directive (RED) and the Fuel Quality Directive (FQD) seeks to rein in a standing European policy which is highly supportive of first-generation biofuels. The directives currently fail to account for biofuel’s emissions from indirect land use change (ILUC) while simultaneously aiming for 10% of transport energy from renewable sources – mainly biofuel – by 2020. First generation biofuels are those derived from soya, rapseed, palm oil and other food crops, and their extensive use has resulted in higher food prices and the destructive conversion of land. The updated directive therefore aims to limit the EU’s incentives for these first generation biofuels. The Commission proposal set a 5% limit for food-based biofuels to count toward the EU’s 10% target of renewable energy in transport by 2020. This would be a step towards mitigating biofuels’ negative climate impacts and encouraging more second and third generation biofuels, also known as advanced biofuels. The report is set to be debated in the European Parliament’s plenary session on Monday 9 September, with the vote on 11 September. It is in anticipation of this vote that more than a hundred stakeholders joined Ertug, Lepage and their diverse panel to discuss the challenges of biofuels. Compromising Lepage noted that in her role as rapporteur, the key task has not been to push through her own views, but to find compromises. One such compromise involved changing the Commission’s original proposal for a so-called 5% cap on all first generation biofuels to instead distinguish between better and worse performers. The Parliament’s report would therefore allow some biofuels, such as ethanol, to continue their production toward 10% renewable fuels in transport without such a consideration of the 5% limit. The assessment of which biofuels constitute better or worse performers will be based on their greenhouse gas emissions. One of the central reasons for promoting biofuels in place of fossil fuels is the belief that biofuels have lower, or in theory neutral, greenhouse gas emissions. Because biofuel feedstocks have already absorbed CO 2 from the atmosphere while growing, the CO 2 released when they are burned involve no emissions above those naturally occurring when the biomass rots. While this is true in theory, the added consideration of land use change means the reality can be very different. Biofuels are not automatically low emitters Indirect land use change (ILUC), and how to account for it, is one of the most contentious issues regarding biofuels. When forests and other habitats absorbing CO 2 from the atmosphere are being removed to make room for biofuel crops and new farm land, the result is increased greenhouse gas emissions. This is both from less forest to absorb CO 2 and from machinery and transport emissions, increased use of chemicals and fertilizers, reduced biodiversity, labour and social migration. In some cases then, when including ILUC considerations, emissions from first generation biofuels are not significantly lower than emissions from fossil fuels. And several research publications over the last year have indicated that they could be the same or higher. The Costa Pinto production plant set up to produce both sugar and ethanol fuel, at Piracicaba, Sao Paulo, Brazil. Creative Commons, Mariordo, 2009. The problem is the policy, not the fuel Amongst the 4 September debate’s panelists was ActionAid, whose representative made the point that the problem is not with biofuels, but with the existing policy which encourages excessive use and reliance on first generation biofuels. The debate, however, focused more on the challenges of these first generation biofuels, particularly regarding ILUC and accounting for greenhouse gas emissions, when it could have been an opportunity to delve into the opportunities of advanced biofuels. Broad progress is being made in these areas, as with the Spanish All-gas project producing biofuel from wastewater algae, and Bellona launching Ocean Forest . The related Sahara Forest Project has in the past year harvested several of its first food crops, illustrating how growing biomass for energy does not need to compete with food production. And combining biofuels with existing technologies such as CO 2 Capture and Storage (CCS) could potentially reverse global warming. Bellona Europa initiated and co-authored the first-of-its kind report on Bio-CCS, outlining the combination of CCS with conversion of sustainable biomass to remove CO 2 from the atmosphere over time. Following the recent debate, Jonas Helseth, Director of Bellona Europa and Steering Committee member of the European Biofuels Technology Platform (EBTP) noted that: “It is paramount that the discussion regarding biofuels does not only address the problems, but also looks at these solutions being developed.” The industry-led initiative ‘Leaders of Sustainable Biofuels’ was therefore welcomed when launched in February this year to work towards policy measures encouraging advanced biofuel production. A more robust and predictable 2020 and post 2020 framework is needed to encourage further investment. On the ground The need for compromise is stark in the debate, largely between industry and NGOs. Amongst the debate’s panelists was Nur Hidayati of WALHI, Indonesia’s Friends of the Earth, who came to Brussels to bring the reality of Indonesian biofuels production to EU policy makers. Hidayati illustrated the current expanse of Indonesian palm oil plantations, which are set to expand to three times the size of Portugal by 2020. Hidayati said EU biofuels policy has been a hidden trap for Indonesia. Partly as a result of expansive biofuels production, Indonesia is now the world’s third largest greenhouse gas emitter. The debate was moderated by the Institute for European Environmental Policy, and other panelists included representatives from the European Biodiesel Board (EBB), the University of Potsdam, European Feed Manufacturer Association (FEFAC), and Transport & Environment. Transport and Environment have engaged heavily in the biofuels debate and have campaigned for EU legislation to better address and account for the impacts of ILUC. For more information, visit their website . Continue reading
Economic Feasibility of Sustainable Non-Food Biodiesel: Castor
Economic Feasibility of Sustainable Non-Food Biodiesel: Castor Economic Feasibility of Sustainable Non-Food Feedstock Based Biodiesel Production: Castor Bean Biodiesel Business Academy Global Knowledge Platform for a Sustainable Future CENTER FOR JATROPHA PROMOTION & BIODIESEL Building a sustainable biodiesel industry TELE: +91 141 2335839 FAX: + 91 141 2335968 CELL: +91 9413343550 E-Mail jatrophacurcas@gmail.com URL http://www.jatrophabiodiesel.org In a previous articles titled Economic Feasibility of Sustainable Non-Food Feedstock Based Biodiesel Production: Part 1 Part 2 and Part 3, we covered how Pongamia Pinnata, Moringa and Simarouba glauca are going to be sustainable low cost feed stock to build a profitable biodiesel industry. In this article we are going to discuss the potentiality of Castor Bean: cut carbon and fuel the future Biofuels are becoming big policy and big business as countries around the world look to decrease petroleum dependence, reduce greenhouse gas (GHG) emissions in the transportation sector, and support agricultural interests. After more than a decade of healthy growth for conventional biofuels like ethanol and biodiesel, the next wave of advanced biofuels is currently on the cusp of commercial scale-up. Biofuels have already helped the world achieve a tangible reduction in emissions as global CO2 emissions are forecast to rise by as much as 50 per cent over the next 25 years. Nevertheless, the world has come a long way, especially since the original Kyoto Protocol . Numerous countries have adopted mandated bio-content requirements for traffic fuels, for example. Considerable technological progress has also been made, in terms of new refining processes, new types of feedstock, and completely new energy sources. While some of these developments will be important for society two or three decades from now, the ones that call for the most attention are those that can help us start making a difference today. Making more of a difference today Biofuels offer the most direct route available today for reducing traffic-related emissions of CO2 and are already widely available. The future success of the biofuels industry will depend on a number of factors and learning experiences. No easy challenge, it must be admitted, but a necessary one all the same. The number one priority is that the raw materials required to produce biofuels are likely to remain more expensive than crude oil for the foreseeable future. Without this, industry will be unable – and ultimately unwilling – to make the type of investments needed, not only in capacity based on the best existing technology but also in new conversion technologies that can make use of a broad range of globally available feedstock..The degree to which the promotion of biofuels enters into competition with food production, raising questions of food security, depends on a variety of factors: Choice of feedstock; Natural resources involved (especially land and water); Relative efficiencies (yields, costs, GHG emissions) of different feedstocks; Processing technologies adopted. Concern over competition between biofuels and food production has been particularly acute given the overwhelming use of food and feed crops for both ethanol and biodiesel. Several measures are suggested for mitigating this problem. Among them, recommending a low cost input technology for cultivating hardy perennial crops that can grow well even with erratic and low rainfall, still giving assured returns is of great significance. In this context, cultivation of Castor Bean that can grow well under a wide range of hostile ecological conditions, offers a great hope. Castor bean, an annual oil crop, produces a seed that contains approximately 50 percent oil. The oil is of a high quality and there is a growing market for it among biodiesel manufacturers. The oil also has wide ranging applications in the industrial bio-chemical sector. As part of our quest to develop and market sustainable biofuels that have a minimal impact on food supplies and can help us make tangible reductions in greenhouse gas emissions, we’re investing in a number of promising research projects. Research and development programme at Center for Jatropha Promotion & Biodiesel (CJP) focuses on the 17 primary non-food sources of biodiesels —out of which seven namely Jatropha, Jojoba, Castor, Pongamia, Moringa, Castor Bean and Microalgae have been tried, tested that adequate amount of each type of feedstock that could be sustainably produced and utilized across the globe without compromising the fertility of agricultural soils, displacing land needed to grow our food, or threatening the health of our farms and forests. Future biodiesel production should be sourced from crop feedstock’s such as moringa, pongamia and castor that can be grown on marginal land. This will ensure establishment of a sustainable biodiesel industry that will not compete for land and other resources with the rest of the agricultural sector that produces food and fibre. In addition, sustainable biodiesel production will rely significantly on the capacity to run economically viable and profitable operations that will be resilient to fluctuations in fossil and non-fossil fuel prices, and government policies in relation to renewable energy and carbon emission reductions.Biofuel policies have been successful in developing an economic sector and a market. There are now more than 60 countries that have developed biofuel policies. Given the increasing price of fossil fuels and more efficient production, biofuels, or at least some of them, will be competitive even without public support. Increasingly it will be the market rather than policies that will drive the development of the sector. About the Plant Castor (Ricinus communis L.) is cultivated around the world because of the commercial importance of its oil. India is the world’s largest producer of castor seed and meets most of the global demand for castor oil. India produces around 1 million tonnes of castor seed annually, and accounting for more than 60% of the entire global production. Because of its unlimited industrial applications, castor oil enjoys tremendous demand world‐wide. The current consumption of Castor Oil and its derivatives in the domestic market is estimated at about 300,000 tonnes. India is also the biggest exporter of castor oil and its derivatives at 87% share of the international trade in this commodity. Castor is an important non‐edible oilseed crop and is grown especially in arid and semi arid region. It is originated in the tropical belt of both India and Africa. It is cultivated in different countries on commercial scale, of which India, China and Brazil is major castor growing countries accounting for 90 per cent of the worldʹs production. Historically, Brazil, China and India have been the key producing countries meeting global requirements. However, in early 90’s, Brazilian farmers moved away to more lucrative cash crops, and surge in domestic demand in China made them net importers, leaving India to meet the global demand. Cultivation Pattern Castor crop needs a tropical type of climate to develop. That’s why the castor is largely found in the countries lying in the tropical belt of the world. BENEFITS Castor Oil’s application range is very wide ‐ the uses range from cosmetics, paints, synthetic resins & varnishes, to the areas of national security involving engineering plastics, jet engine lubricants and polymers for electronics and telecommunications. Castor is a versatile, renewable resource having vast and varied applications such as lubricating grease, surfactants, surface coatings, telecom, engineering plastics, pharma, rubber chemicals, nylons, etc. Castor oil and its derivatives find major application in soaps, lubricants, grease, hydraulic brake fluids and polymers and perfumery products. The primary use of castor oil is as a basic ingredient in the production of nylon 11, jet engine lubricants, nylon 6‐10, heavy duty automotive greases, coatings and inks, surfactants, polyurethanes, soaps, polishes, flypapers, lubricants, and many other chemical derivatives and medicinal, pharmaceutical and cosmetic derivatives. The seeds and residual cake are highly poisonous and unless processed to remove the poisons cannot be fed to livestock. In some countries the cake is used as a fertilizer. Poisons contained in the cake include ricin. Castor is a plant that is commercially very important to the world. Castor seed oil cake is very useful manure to crops. Castor Cake is an excellent fertilizer because of high content of N (6.4%), Phosphoric Acid (2.55%) and Potash (1%) and moisture retention.which is suitable for cultivation of Paddy, Wheat, Maize and Sugarcane. Castor Oil Castor oil is obtained by pressing the seeds, followed by solvent extraction of the pressed cake. Castor Oil is one of the world’s most useful and economically important natural plant oils. India supplies 70% of the world’s requirements of castor oil. This oil is unique among vegetable oils and uniqueness is derives from the presence of a hydroxyl fatty acid known as ricinoleic acid (12‐ hydroxyl‐cis‐9‐octadecenoic acid) which constitute around 90% of the total fatty acids of the oil. Castor Oil is also distinguished from other vegetable oils by its high specific gravity, thickness and hydroxyl value.Castor oil is used either in its crude form, or in the refined hydrogenated form. Typically, 65% of it is processed. About 28% is refined, 12% is hydrogenated, 20% is dehydrated, and the balance 5% is processed to manufacture other derivatives. The major derivatives of Castor oil used in the industry– hydrogenated castor oil (HCO), Dehydrated castor oil (DCO), Sebacic acid etc. Carbon Credit The castor Plants act as sinks for carbon dioxide as Castor bean plants capture around 10 tons of carbon dioxide for every hectare (2.471 acres) planted and, hence, the Ricinus communis plantation will reduce the amount of this greenhouse gas (GHG) in the atmosphere. Given the widespread presence and ease of cultivation of the Castor Bean oil plant it could be cultivated in conjunction with subsistence agriculture programs as a potential oilseed feedstock for biodiesel. Food v Fuel & Castor Bean As per a recent report of World Bank, the rising crude oil prices are the biggest contributor to rising food prices. In the production and distribution of food, oil is used in everything from fertilizer production to powering farm equipment and transporting the food to consumers. In such context the World Bank report suggests that to stem rising food prices, the widespread famine inflicted on the world’s poorest countries, and the economic hardship exacted on the poor and working-class within the developed world, we must control oil prices. Further, the study carried out at CJP reveals that Castor Bean seed oil has good nutritional profile and other physico-chemical properties which got improved after the process of refining; therefore it can be used as a potential oil seed resource for edible purpose and bio-fuel production. Castor Bean as a source of biodiesel The Ricinus communis biodiesel meets all the three criteria any environmentally sustainable fuel must meet. These are social, technical and commercial. The seeds from the Ricinus communis Plant contain in excess of 45% oil. Castor seed oil is being used widely for various purposes. It is used as a lubricant in high-speed engines and aero planes, in the manufacture of soaps, transparent paper, printing-inks, varnishes, linoleum and plasticizers. It is also used for medicinal and lighting purposes. The cake is used as manure and plant stalks as fuel or as thatching material or for preparing paper-pulp. In the silk-producing areas, leaves are fed to the silkworms. Now the main use of the oil will be as bio fuel and for the production of biodiesel. This oil has an ash content of about 0.02% and the percentage of sulfur is less than 0.04%.The higher the cetane number (CN), the better the fuel will be when used as a diesel. The CN of the majority of biodiesel fuels is actually higher than petrol or diesel, and the cetane number of castor oil biodiesel is in a good range for diesel engines. The castor biodiesel has very interesting properties (very low cloud and pour points) that show that this fuel is very suitable for using in extreme winter temperatures. The project has many other positive economic, social and environmental impacts: There are income generation opportunities that result from the project like the provision of goods and services to the cultivation and its workers Yield Estimates: Castor Bean Yield is a function of light, water, nutrients and the age of the Plant. Good planning, quality planting material, standardized agronomy practices and good crop management may handsomely increase the yields. Ricinus communis will yield at Maturity as high as +1000 kl oil with proper nutrition, and irrigation. This is truly an exceptional amount of oil from an agricultural crop. ILUC discussion and Castor Bean The ILUC effect has become a controversial issue in international debates but also in some national debates. Many studies have shown there is enough land available to produce more food, more feed and more biofuels. According to FAO using the GAEZ classification of land types, there is a gross balance of 3.2 billion ha of prime and good land not used for growing crops, leaving a net balance of 1.4 billion ha, after subtracting built-up areas, forests and protected areas. Though the discussion of indirect land use change (ILUC) caused by biofuels is not scientifically supported, the Castor Bean does not cause land use change. It is an annual crop and grown in arid and semi arid regions. Biodiesel can make a large contribution to the world’s future energy requirements; this is a resource we cannot ignore. The challenge is to harness it on an environmentally and economically sustainable manner and without compromising food security. Economics: Cost & benefit ratio Castor farming is being developed by CJP in conjunction with Pongamia Pinnata and Indian mustard, and has shown to be a heartier and higher yielding variety as companion crop. Being a companion crop, castor bean can give the grower the ability to double crop and earn more — it’s like adding a second shift to the factory of agriculture. The double oil crop adds to the farmer’s income, creates jobs in the crushing operations, and the oil derived from the seed will help decrease foreign oil dependency. It’s a very attractive proposition for all stakeholders involved. Vast scope exists for exploitation of castor as a bioenergy crop although there are still some technological challenges to overcome. A combination of conventional breeding methods with biotechnological techniques provides newer routes for designing oils for biofuel purpose.Non-food castor will produce enough oil in the double-crop environment with Pongamia, simarouba or Indian mustard. The Castor Bean Biodiesel can be produced less than US$ 39 per barrel, detailed economics are here . Estimates of yields, prices and cost vary greatly, making it difficult for potential growers to make informed investment decisions about growing the crop. We identify the key elements in growing castor and examine their effects. We also provide accurate information about the crop for potential castor investors and growers after performing feasibility studies. BBA’S Next 6th 5 day Global Jatropha Hi-tech Integrated Nonfood Biodiesel Farming & Technology Training Programme in India from September 23-27, 2013 is all set to introduce you to the real world of nonfood biodiesel crops and business. Attendees shall also have the opportunity to explore castor crop science, agronomy and its cultivation technology etc. as these have also been included in the course. To find out more about JATROPHAWORLD 2013 please visit w ww.jatrophabiodiesel.org . As seats are limited in 6th Global Jatropha World 2013, register now. One can contact Coordinator Programme on M +91 9829423333 or mail to sign up for the event early and secure your place without delay. The next issue Part 5 shall be focused on “ Jojoba: Diesel from Desert Shrub” Director (Training) Biodiesel Business Academy T +91 141 2335839 F: +91 141 2335968 M- +91 982943333, www.jatrophabiodiesel.org Continue reading
The Latest Clean Energy Cocktail: Bacteria And Fungus
BY JEFF SPROSS ON AUGUST 23, 2013 By throwing together a common fungus and a common bacterium, researchers are producing isobutanol — a biofuel that gallon-for-gallon delivers 82 percent of gasoline’s heat energy. The more common ethanol, by contrast, only gets 67 percent of gasoline’s energy, and does more damage to pipelines and engines. And the University of Michigan research team did it using stalks and leaves from corn plants as the raw material. The fungus in question was Trichoderma reesei , which breaks down the plant materials into sugars. The team used corn plant leftovers in this case, but many other forms of biomass like switchgrass or forestry waste could also serve. The bacterium was Escherichia coli — good old-fashioned E. coli — which then converted those sugars into isobutanol. Another team of researchers at the University of Wisconsin-Madison recently came up with a similar process by studying leaf cutter ants, but their work produced ethanol instead. The University of Michigan team also got the fungi and bacteria to co-exist peacefully in the same culture and bioreactor. That means fewer cost barriers to commercializing the process: “The capital investment will be much lower, and also the operating cost will be much lower,” Xiaoxia “Nina” Lin, the team’s leader, explained. “So hopefully this will make the whole process much more likely to become economically viable.” The big advantage of a cellulosic biofuel like this is twofold. One, because it can be produced from crops that don’t double as a food source, demand for it won’t drive up food prices or contribute to global food insecurity. Traditional corn-based ethanol obviously competes with one of the world’s most basic and widely-used foods, and American and European demand for it has contributed to spiraling food costs and crises in Guatemala and across the developing world. Studies looking into the 2008 food crisis determined that biofuel policies contributed to the problem, compounding the threat of global food insecurity, which in turn helps drive geopolitical upheaval and destabilization. Two, by driving up demand for food crops, traditional biofuels encourage individuals and countries to clear ever more natural land for agriculture. Grasslands and natural forest store more carbon from the atmosphere than cropland. So the growth in biofuel production, means less natural ecology to absorb carbon, leaving more greenhouse gas in the atmosphere. On top of that, agriculture involves its own carbon emissions from driving tractors and such. So put it all together and traditional biofuel production is largely self-defeating in terms of the final amount of carbon dioxide left in the atmosphere. But if a process like this one produces biofuel purely from waste materials — stuff left over from crops we would’ve grown regardless, on land we would’ve cleared regardless — those biofuels will deliver a much bigger net positive when it comes to fighting climate change. “We’re really excited about this technology,” said Jeremy Minty, another member of the team. “The U.S. has the potential to sustainably produce 1 billion tons or more of biomass annually, enough to produce biofuels that could displace 30 percent or more of our current petroleum production.” And it’s not just fossil fuels that could be replaced, either. Petrochemicals are also used in making a host of other products, especially plastics. The research team hopes their work could be adapted to replace the petrochemicals used in those processes as well. HT: CleanTechnica Continue reading